martes, 23 de noviembre de 2010

CINEMATICA VS DINAMICA

 
                        CINEMATICA
La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose, esencialmente, al estudio de la trayectoria en función del tiempo.
En la Cinemática se utiliza un sistema de coordenadas para describir las trayectorias, denominado sistema de referencia. La velocidad es el ritmo con que cambia la posición un cuerpo. La aceleración es el ritmo con que cambia su velocidad. La velocidad y la aceleración son las dos principales cantidades que describen cómo cambia su posición en función del tiempo


1.    Un cuerpo  que se mueve con velocidad constante de 3 m/s, se encuentra situado a 15 m a la derecha del origen cuando comienza a contarse el tiempo. Escribe las ecuaciones que describen su movimiento.

Solución:

Ecuaciones generales para el movimiento rectilíneo y uniforme: 
Valores de  y v para este caso:
Ecuaciones particulares para este movimiento: 


2.    El movimiento de un cuerpo obedece a la ecuación siguiente:  Indica el tipo de movimiento del cuerpo y realiza un esquema de su trayectoria.
a)    ¿Qué aspecto tendrán las gráficas s/t y v/t?
b)    ¿Cuánto tiempo tardará en pasar por el origen?

Solución:

El cuerpo se mueve con movimiento rectilíneo y uniforme (M.R.U), ya que la ecuación s/t es del tipo , siendo los valores de las constantes, para este caso:  el signo menos se debe a que inicialmente se encuentra situado a la izquierda del origen.
v = 5 m/s el signo positivo nos indica que se mueve hacia la derecha.

                              DINAMICA

Estudia el movimiento de los objetos y de su respuesta a las fuerzas. Las descripciones del movimiento comienzan con una definición cuidadosa de magnitudes como el desplazamiento, el tiempo, la velocidad, la aceleración, la masa y la fuerza.
Isaac Newton demostró que la velocidad de los objetos que caen aumenta continuamente durante su caída. Esta aceleración es la misma para objetos pesados o ligeros, siempre que no se tenga en cuenta la resistencia del aire (rozamiento). Newton mejoró este análisis al definir la fuerza y la masa, y relacionarlas con la aceleración.
Para los objetos que se desplazan a velocidades próximas a la velocidad de la luz, las leyes de Newton han sido sustituidas por la teoría de la relatividad de Albert Einstein. Para las partículas atómicas y subatómicas, las leyes de Newton han sido sustituidas por la teoría cuántica. Pero para los fenómenos de la vida diaria, las tres leyes del movimiento de Newton siguen siendo la piedra angular de la dinámica (el estudio de las causas del cambio en el movimiento).

LAS LEYES DEL MOVIMIENTO DE NEWTON

Con la formulación de las tres leyes del movimiento, Isaac Newton estableció las bases de la dinámica.

PRIMERA LEY DE NEWTON (EQUILIBRIO)

Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la fuerza resultante es nula (ver condición de equilibrio).
El que la fuerza ejercida sobre un objeto sea cero no significa necesariamente que su velocidad sea cero. Si no está sometido a ninguna fuerza (incluido el rozamiento), un objeto en movimiento seguirá desplazándose a velocidad constante.
Para que haya equilibrio, las componentes horizontales de las fuerzas que actúan sobre un objeto deben cancelarse mutuamente, y lo mismo debe ocurrir con las componentes verticales. Esta condición es necesaria para el equilibrio, pero no es suficiente.
SEGUNDA LEY DE NEWTON (MASA)
Para entender cómo y por qué se aceleran los objetos, hay que definir la fuerza y la masa. Una fuerza neta ejercida sobre un objeto lo acelerará, es decir, cambiará su velocidad. La aceleración será proporcional a la magnitud de la fuerza total y tendrá la misma dirección y sentido que ésta. La constante de proporcionalidad es la masa m del objeto. La masa es la medida de la cantidad de sustancia de un cuerpo y es universal.
Cuando a un cuerpo de masa m se le aplica una fuerza F se produce una aceleración a.
F = m.a
Unidades: En el Sistema Internacional de unidades (SI), la aceleración a se mide en metros por segundo cuadrado, la masa m se mide en kilogramos, y la fuerza F en newtons.

Se define por el efecto que produce la aceleración en la fuerza a la cual se aplica. Un newton se define como la fuerza necesaria para suministrar a una masa de 1 kg una aceleración de 1 metro por segundo cada segundo.
Un objeto con más masa requerirá una fuerza mayor para una aceleración dada que uno con menos masa. Lo asombroso es que la masa, que mide la inercia de un objeto (su resistencia a cambiar la velocidad), también mide la atracción gravitacional que ejerce sobre otros objetos. Resulta sorprendente, y tiene consecuencias profundas, que la propiedad inercial y la propiedad gravitacional estén determinadas por una misma cosa. Este fenómeno supone que es imposible distinguir si un punto determinado está en un campo gravitatorio o en un sistema de referencia acelerado. Albert Einstein hizo de esto una de las piedras angulares de su teoría general de la relatividad, que es la teoría de la gravitación actualmente aceptada.
Se deduce que:
1 kgf = 9,81 N
En particular para la fuerza peso:
P = m.g

TERCERA LEY DE NEWTON (ACCIÓN Y REACCIÓN)


Cuando a un cuerpo se le aplica una fuerza (acción o reacción), este devuelve una fuerza de igual magnitud, igual dirección y de sentido contrario (reacción o acción).
Por ejemplo, en una pista de patinaje sobre hielo, si un adulto empuja suavemente a un niño,no sólo existe la fuerza que el adulto ejerce sobre el niño, sino que el niño ejerce una fuerza igual pero de sentido opuesto sobre el adulto. Sin embargo, como la masa del adulto es mayor, su aceleración será menor.
La tercera ley de Newton también implica la conservación del momento lineal, el producto de la masa por la velocidad. En un sistema aislado, sobre el que no actúan fuerzas externas, el momento debe ser constante. En el ejemplo del adulto y el niño en la pista de patinaje, sus velocidades iniciales son cero, por lo que el momento inicial del sistema es cero. Durante la interacción operan fuerzas internas entre el adulto y el niño, pero la suma de las fuerzas externas es cero. Por tanto, el momento del sistema tiene que seguir siendo nulo. Después de que el adulto empuje al niño, el producto de la masa grande y la velocidad pequeña del adulto debe ser igual al de la masa pequeña y la velocidad grande del niño. Los momentos respectivos son iguales en magnitud pero de sentido opuesto, por lo que su suma es cero.
Otra magnitud que se conserva es el momento angular o cinético. El momento angular de un objeto en rotación depende de su velocidad angular, su masa y su distancia al eje. Cuando un patinador da vueltas cada vez más rápido sobre el hielo, prácticamente sin rozamiento, el momento angular se conserva a pesar de que la velocidad aumenta. Al principio del giro, el patinador tiene los brazos extendidos. Parte de la masa del patinador tiene por tanto un radio de giro grande. Cuando el patinador baja los brazos, reduciendo su distancia del eje de rotación, la velocidad angular debe aumentar para mantener constante el momento angular.
Un libro colocado sobre una mesa es atraído hacia abajo por la atracción gravitacional de la Tierra y es empujado hacia arriba por la repulsión molecular de la mesa. Como se ve se cumplen todas las leyes de Newton.

CUARTA LEY DE NEWTON (GRAVITACIÓN)

Fg = G.m1.m2/r ²
La fuerza entre dos partículas de masas m1 y m2 y, que están separadas por una distancia r, es una atracción que actúa a lo largo de la línea que une las partículas, en donde G es la constante universal que tiene el mismo valor para todos los pares de partículas.
En 1798 Sir Henry Cavendish realizó la primera medición experimental de la constante G utilizando para ello una balanza de torsión. El valor aceptado actualmente es:
G = 6,67.10-11 N.m²/kg²

Fuerza elástica:

Una fuerza puede deformar un resorte, como alargarlo o acortarlo. Cuanto mayor sea la fuerza, mayor será la deformación del resorte (Δx), en muchos resortes, y dentro de un rango de fuerzas limitado, es proporcional a la fuerza:
Fe = -k.Δx
k: Constante que depende del material y dimensiones del resorte.
Δx: Variación del resorte con respecto a su longitud normal.

Fuerza normal:


Fuerza normal al plano e igual pero de sentido contrario a la componente normal al plano, de la fuerza peso.
N = cos α.m.g

Fuerza de rozamiento:

Fuerza aplicada y contraria al movimiento y que depende de la calidad de la superficie del cuerpo y de la superficie sobre la cual se desliza.
Fr = μ.N
μ :Coeficiente de rozamiento.
Fuerza de rozamiento estática: fuerza mínima a vencer para poner en movimiento un cuerpo.
Fuerza de rozamiento cinética: fuerza retardadora que comienza junto con el movimiento de un cuerpo.
En el caso de deslizamiento en seco, cuando no existe lubricación, la fuerza de rozamiento es casi independiente de la velocidad. La fuerza de rozamiento tampoco depende del área aparente de contacto entre un objeto y la superficie sobre la cual se desliza. El área real de contacto (la superficie en la que las rugosidades microscópicas del objeto y de la superficie de deslizamiento se tocan realmente) es relativamente pequeña. Cuando un objeto se mueve por encima de la superficie de deslizamiento, las minúsculas rugosidades del objeto y la superficie chocan entre sí, y se necesita fuerza para hacer que se sigan moviendo. El área real de contacto depende de la fuerza perpendicular entre el objeto y la superficie de deslizamiento. Frecuentemente, esta fuerza no es sino el peso del objeto que se desliza. Si se empuja el objeto formando un ángulo con la horizontal, la componente vertical de la fuerza dirigida hacia abajo se sumará al peso del objeto. La fuerza de rozamiento es proporcional a la fuerza perpendicular total.

Centro de gravedad

En cuanto al tamaño o peso del objeto en movimiento, no se presentan problemas matemáticos si el objeto es muy pequeño en relación con las distancias consideradas. Si el objeto es grande, se emplea un punto llamado centro de masas, cuyo movimiento puede considerarse característico de todo el objeto. Si el objeto gira, muchas veces conviene describir su rotación en torno a un eje que pasa por el centro de masas.

PROBLEMAS DE DINÁMICA

1.Un cuerpo se deja caer libremente desde lo alto de un rascacielos. Al cabo de un tiempo tA, pasa por un punto A. Cinco segundos más tarde, pasa por un punto B. La energía cinética de ese cuerpo en B es 36 veces mayor que en A. Hallar:

El tiempo tA.
Distancia que están separados entre sí los puntos A y B.
Rta.: 1 s, 172 m (P.A.U. Sep 92)

2.Partiendo del reposo, una esfera de 10 g cae libremente, sin rozamien­tos, bajo la acción de la gravedad, hasta alcanzar una velocidad de 10 m/s. En ese instante comienza a actuar una fuerza constante hacia arriba, que consigue detener la esfera en 5 segundos.

¿Cuánto vale esta fuerza?
¿Cuál fue el tiempo total transcurrido en estas dos etapas?.
Dato g = 10 ms-2.
Rta.: 0’12 N, 6 s (P.A.U. Sep 94)

3.Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circun­ferencia vertical de 1 m de radio, cuyo centro esta 10'80 m por encima de un suelo horizontal. La cuerda se rompe cuando la tensión es de 11'2 kg, lo que ocurre en el punto mas bajo de su trayectoria. Calcular:

la velocidad que lleva el cuerpo cuando se rompe la cuerda.
su velocidad en el instante de chocar contra el suelo.
Rta.: 10 m/s; 17'1 m/s (P.A.U.)












No hay comentarios:

Publicar un comentario